wagey.ggwagey.gg
Open Tech JobsCompaniesPricing
Log InGet Started Free
© 2026 Dominic Morris. All rights reserved.·Privacy·Terms·
Jobs/Python Jobs/AI Data Engineer

AI Data Engineer

FluencySan Francisco, California, United States - Hybrid$150k – $250k+ Equity1w ago
In OfficeNACloud ComputingFintechArtificial IntelligenceData EngineerML EngineerAI EngineerPythonAirflowTechnical WritingPrefectDagster

Upload My Resume

Drop here or click to browse · PDF, DOCX, TXT

Apply in One Click

Requirements

  • Skills needed: AI/ML Engineer with experience in data engineering for artificial intelligence applications. Must have strong analytical skills to handle large datasets efficiently. Proficiency in programming languages such as Python and R is required along with knowledge of machine learning algorithms, big data technologies (e.g., Hadoop, Spark), SQL databases, and cloud computing platforms like AWS or Azure.
  • Years of experience: The job posting does not specify a minimum number of years of experience; however, it implies that candidates should have relevant work history in the field of AI/ML engineering with data handling capabilities. Candidates are expected to demonstrate their ability through past projects and accomplishments mentioned during interviews or resume review processes.
  • Education: The job posting does not explicitly mention a required education level; however, it is common for such roles that candidates should have at least a Bachelor's degree in Computer Science, Engineering, Data Science, Statistics, Mathematics, or related fields with coursework and projects relevant to AI/ML engineering.
  • Certifications: The job posting does not explicitly mention any required certifications; however, having industry-recognized credentials such as AWS Certified Solutions Architect Advanced (ACSA), Microsoft Certified: Azure Solutions Architect Expert (MCSE), or similar can be beneficial and may enhance a candidate's application.
  • Must-haves: Candidates must have strong communication skills, both written and verbal, to effectively collaborate with cross-functional teams within the company. Familiarity with Agile methodologies is essential as it indicates that candidates should be able to work in an iterative development environment where they can adapt quickly to changing requirements.

Responsibilities

  • Designing ingestion pipelines that process millions of screenshots and behavioural events daily.
  • Building data validation and quality systems to catch drift before it corrupts models.
  • Creating feature stores and serving infrastructure for balancing freshness against compute cost.
  • Optimizing storage and query patterns for time-series behavioral data.
  • Orchestrating complex DAGs that coordinate OCR, LLM enrichment, and downstream aggregations.
  • Writing the playbook to address technical challenges in areas like data engineering, LLM pipelines, and production systems.
  • Working directly with founders on understanding business context through customer calls and interactions.
  • Helping with product thinking by staying up to date with key aspects of our enterprise intelligence initiatives.
  • Shipping models to production including deployment, versioning, monitoring (strongly preferred).
  • Experience in cost optimization for data-intensive systems is required.
  • Familiarity with multi-region data architectures and residency requirements is expected.

Benefits

  • US$150K - $250K salary, depending on candidate and experience
  • Substantial equity, every offer includes ownership
  • Mac, Linux, or Windows, your call
  • High-impact work with global enterprises
  • Technical, product-led founders
  • Don't apply if:
  • You want hybrid or remote
  • You don't like working hard and with insane velocity
  • You want to work a 9 to 5
  • You're not comfortable with rapid iteration
  • You think data engineering is plumbing work
  • You've never operated production pipelines
  • You don't have personal projects
  • You dislike constraints (we have them: cost, latency, reliability tradeoffs are real)
  • You aren't ambitious
  • You don't have a good reason for wanting to work at an early-stage company
  • 1:1 with founder
  • Technical deep-dive on past data engineering work
  • Work through a real problem with the team
  • We strongly encourage applicants from underrepresented backgrounds to apply. Diverse teams build better products, see value #5.

Similar Jobs

Applied Scientist 2
6h ago
realitydefenderrealitydefender·Remote - USA Remote·$110k – $160k/year
RemoteMidNAApplied ScientistPythonPyTorch
Support Engineer
6h ago
fablefable·Remote - USA *·$120k – $160k/year + Equity
RemoteMidNACybersecuritySoftwareSupport EngineerCustomer RelationsJavaScriptPythonCross-functional CollaborationAccount ManagementJiraDocumentationZendeskIntercom
Analytics Architect
6h ago
GreenhouseGreenhouse·Remote - USA·$145k – $172k/year + Equity
RemotePrincipalNALife InsuranceInsuranceAnalytics EngineerData EngineerDocumentationB2CdbtGreenhouseReportingData QualityData Governance
Data Analyst II
6h ago
computercarecomputercare·Remote - Anywhere - USA *
RemoteMidNAData AnalystReportingSQLData AnalysisPythonTableauPower BIExcelPandasData VisualizationHexLookerData Quality
Associate Data Scientist
6h ago
pointclickcarepointclickcare·Remote, USA - Hybrid
In OfficeJuniorNACybersecurityData AnalyticsData ScientistAssociateMicrosoft OfficeExcelPythonTableauSQLData VisualizationCustomer Success

Stop filling. Start chilling.Start chilling.

Get Started Free

No credit card. Takes 10 seconds.